SEMIEMPIRICAL SOLUTION OF HEAT-TRANSFER
PROBLEMS FOR NUCLEATE BOILING

I. V. Domanskii UDC 536.423.1

On the basis of semiempirical turbulent transport theory, with the dynamic velocity expressed
in terms of the energy dissipation factor controlling the transport process, equations are de-
rived for the heat-transfer coefficient for the nucleate boiling of liquids in the cases of pool
boiling and boiling in vertical pipes.

The heat-transfer process associated with the nucleate boiling of a liquid is realized as a result of
both convection and the generation of vapor, which contributes to the formation and growth of vapor bubbles
[1]. However, for moderate heat inputs and relatively low pressures, such that the density of vaporization
centers is small, heat transfer takes place primarily due to convection. The heat resistance in this case
is concentrated mainly in a wall layer of liquid, the thickness of which is determined by the turbulence state
of its vapor bubbles formed on the heat-transfer surface. If we assume that the heat-transfer law for
nucleate boiling is consistent with the laws of convective transport, we can analyze this process by the
general methods used for the solution of such problems.

We propose to analyze the nucleate boiling process on the basis of the semiempirical theory of tur-
bulent transport [2-4]. The heat-transfer laws for steady liquid flow over a heat-transfer surface are
described with reasonable accuracy by means of this theory when the characteristics of the turbulent fluc-
tuations in the flow can be expressed in terms of the tangential stresses 7, and when the dynamic velocity
is given by the relation
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It has been shown in a series of examples in [5-8] that if the dynamic velocity is expressed in terms of the

transport-controlling energy dissipation E; (energy dissipation in the wall layer) in the form
o

Uy =

D

i/

the semiempirical theory can also be used to advantage for the solution of many other problems in heat
transfer and hydrodynamics (heat transfer at the wall of a bubble tower or in equipment that uses mixers,
heat transfer and drag in gas—liquid flows, etc.); the heat-transfer process in all these cases is described
by the equation [9]

CHYSL TN 4 (2)

A Uy ’l])

Here y = f(u,, Pr);the form of this function is given in [6, 9] and elsehwere, The magnitude of the energy
dissipation controlling the transport process for steady liquid flow over a plane heat-transfer surface and in
pipes is equal to the energy dissipation in the laminar substrate (E; = T%/pv) and can be calculated in the
same way as the ratio of the total flow-dissipated power

N = 15w (3)
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to the volume of the wall layer
V = 58, (4)

N
EO -77. (5)

As we know, the relationship between the thicknesses of the hydrodynamic and thermal boundary layers
is expressed as follows:

D.1/3
61’1: 6,[ Pr/e.
The thickness of the thermal boundary layer (A /a) can be represented as follows on the basis of (2):
8, = Vo ,
g  Pr
and, since y/Pr ~ Pr71/3 it follows that
S~ — . (6)
U

Taking (3), (4), and (6) into account, we find that Equation (5) takes the form

Eoz%mﬁiw_*

After the substitution of this expression into (1) we arrive at the relation

T R T

For the more general case in.which the wall layer contains a uniformly distributed turbulence source
of total power N we readily deduce the following relation from expressions (1), (4), (5), and (6) for the de-

termination of uy:
3 / N
~ — . 8
el G ®

This relation can be used in conjunction with Eq. (2) to analyze the heat-transfer process in nucleate
boiling if the vaporization centers are represented as uniformly distributed turbulence sources of power
Az
g
The number z' of vaporization centers acting simultaneously is related to the total number z of centers by
the expression

N =

2 =z 18 R
Th
and, since T, =1/f, we have
N = Azf. (9)
With regard for Eq. (9), expression (8) assumes the form
3
U, ~ / A,n . (10)

In order to calculate the work A done by one bubble in growing on the heat-transfer surface up to the instant
of breakoff we use the following expression characterizing the growth of a vapor bubble [10]:

R == at'?
in which
@ V ZBrAT (11)
I'pr

where § is a coefficient depending only on the extreme contact angle. This equation implies that the in-
stantaneous growth rate of the vapor bubble is
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The drag force of the bubble surface in the liquid can be expressed approximately by the relation
F ~ puR?
or, taking the dependence (12) into account,
F ~ pa*. (13)

Rﬂ
After integration with regard for (13) the expression for the work A = 5 FdR acquires the form A ~ pa4(R0
Rb

— Ry), where R;is the radius of the bubble nucleus.
Inasmuch as Ry > Rb, we can assume that
A~ pa*R,. (14)
After the substitution of (14) into Eq. (10), the latter assumes the form

u ~ v @R . (15)

It has been verified experimentally in [11, 12] that the product Ryf = const over a wide range of varia-
tion of heat inputs and it can be calculated [13] according to the equation
. 1/4
[ (16)

4y = 2R,f = 059 %80

I
Using expressions (11), (16), we readily reduce relation (15) to the form

) A \23
u, =k ( > us® AT p' |
0y .

and by substitution of u'; into Eq. (2) we obtain the following relation for o:

5/3 173
LY (7)
v m)” oy
In order to check the validity of Eq. (17) it suffices to compare it with the published experimental and theo-
retical data on the influence of the bubble generation frequency f, density n of vaporization centers, and

temperature differential AT on the heat-transfer coefficient.

a==~r

It follows from Eq. (17) that for moderate heat inputs the heat-transfer coefficient is independent of
f. This fact has been established experimentally in {14].

A simultaneous measurement of the heat-transfer coefficient and the number of active vaporization
centers as a function of the time in protracted water boiling with ¢ = const has been carried out in {15]. It
follows from the experimental data of [15] for o ~ n'/5, An analogous relation is also obtained from (17)
for q = const. In [12]the relation o ~ AT2/3n!/3 is given, which is completely consistent with (17); in [16+
18] the power exponents differ, but only slightly.

We infer from the foregoing comparisons that the solution of the heat-transfer problem for nucleate
pool boiling in the regime of dominant heat transfer is theoretically possible by means of the semiempirical
turbulent transport theory, which yields good results. In order to determine the number of vaporization
centers we use the following approximate relation given in {19]:

3
n—6.25. 10741 (—’%ﬁ—A—T—> , (18)

Kot

in which L =1 m, Egquation (17) with (18) taken info account gives the reiation o = f(AT) and correctly re-
flects the influence of the physical properties of the liquid and vapor on the heat-transfer coefficient,

For the analysis of boiling in the case of large vaporization center densities it is required, as in [1],
to take into account the heat of formation of the bubbles growing on the heat-transfer surface.
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Fig. 1. Ratio a/aj versus o), /ay. 1) According to the Kutateladze equation [21];
Labuntsov equation {22]; 3) author's equation (21),

Fig. 2. Heat-transfer coefficient o, kW/m? deg, versus mixture flow velocity Wmxo
m/sec, at a pressure of 1.9-107% N/m?, According to Eq. (21): 1) w; = 0.33; 2) 1;
3) 2 m/sec; 4) according to the Borishanskii equation (22). For the dashed curve g
=13.9 -10° W/m?; for the solid curve q = 3.48°10° W /m?,

The applicability of turbulent transport theory for the analysis of nucleate pool boiling also affords
an approach to the solution of the heat-transfer problem for the boiling of directionally flowing liquids in
pipes.

For the solution of this problem we introduce an additional assumption, namely that the heat-trans-
fer process is characterized by the total power dissipated in the medium. The admissibility of this as-
sumption has been demonstrated experimentally in the solution of the heat-transfer problem for gas—liquid
flows in pipes [7]. The power of one of the sources of agitation of vapor bubbles growing on the heat-trans-
fer surface is characterized by Eq. (9). Besides the latter, in an ascending flow of a vapor—liquid mixture
the power needed to transport the liquid upward, except for that part used in the formation of a potential
and kinetic energies, will be dissipated in the liquid, For a short section of pipe of height H it may be as-
sumed that wy, = const, whereupon
nd?

, qud?
N = (w, +w;)Ap- T_wlng
where Ap = pgH(1— @) + 47 /d is the pressure drop over the length H.

After suitable transformations we arrive at the expression
N' = adHvgw A+ w0 (1 — @) ogH,

in which
Wy w]

W, =
e ¢ I—CP

The total power, on the other hand, characterizing the heat-transfer process in the given situation can be
represented in the form

N = Aef + ndHw 7, + 0, (1 — ) pgh.

In the determination of the energy dissipation E, the first two terms must be referred to the wall layer
volume mdHég, while the third term, which characterizes the power losses in the relative motion of the
phases, must be referred [7, 8] to the total liquid volume in the pipe, V = (7d*/4)H(1— ¢), because the
relative motion elicits nearly isotropic turbulence. Taking into account expression (7) and the one-way
permeation of fluctuations from the flow core to the wall layer [7], we obtain the following expression for
Ey:

Afn

v

E, = k’( ty o ”*) + #0089 (1 — o)

and a corresponding expression for the calculation of u,, taking (1), (7), and (10) into account:

4 ”3 [ ,3 I 17t
Uy =U U, —U U T U, -, (19)
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where

u = n (vgw o (1 —@)",
and ® = 1.9 is a proportionality factor {7]. The determination of the exat solution of Eq. (19) is problemati-
cal. However, within 3% error limits u, can be found from the approximate relation

R (A A el A (20)

Recognizing that the dimensionless temperature ¢ in Eq. (2) depends only very slightly on u,, we transform
Egs. (20) and (2) to the following:
o = [(of -+ oh ) 4 e 1, (21)

in which, with regard for relations (2) and (7),

T \12
oy = 0 (—;’—) .
i

The quantity oy has to be included only for small liquid flow velocities, small heat fluxes, and large
volume contents of vapor, i.e., for ape > o and aype > o). Note that in deriving Eqgs. (20) and (21) it was
assumed that the law 2R,f = u; determined experimentally for pool boiling carries over to the case of forced
circulation of the liquid and that, in addition, the density of vaporization centers is independent of the liquid
flow velocity. These assumptions, of course, require experimental corroboration. The investigation of
[20] proves, however, that ap~ s i.e., for fully developed boiling in pipes the way in which various fac-
tors affect the heat-transfer rate is the same as in boiling under free-convection (pool) conditions. More-
over, a comparison of relation (21) with the equations of Kutateladze [21] and Labuntsov [22] (Fig. 1), which
hold for small vapor contents, such that ape < oy, e << @y, and Ty ~ 7, and with the equation of Bori-
shanskii et al. [23]:

7 3 ql/2
¢ 065 [1 4151078 (i@ﬁi) ] , (22)
pb q

which is valid over a wide range of vapor contents in the mixture (Fig. 2), implies that the foregoing as-
sumptions are reliable.” In the comparison of Eqgs. (21) and (22) the ratio 7,/7; was calculated from the
Martinelli— Nelson relation [24], and it was assumed {20] that oy = 0.6504pb.

NOTATION
R is the vapor bubble radius;
R, " is the vapor bubble breakoff radius;
d is the pipe diameter;
H is the pipe length;
og is the thickness of hydrodynamic boundary layer;
Oy is the thickness of thermal boundary layer;
T is the time;
Tg is the bubble growth time;
Th is the bubble nucleation time;
i is the bubble formation frequency;
W is the dynamic velocity; uy = 2Rf;
u, is the bubble growth rate;
w is the average flow velocity of liquid;
Wys Wy are the reduced velocities of vapor and liquid;
Wre is the relative velocity of phases;
Xmx = Wy + Wy is the velocity of vapor —liquid mixture;
g is the free-fall acceleration;
s is the surface area;
Ty is the tangential stress at wall;
T is the tangential stress at wall during liquid flow;
E, is the transport-controlling energy dissipation;
A is the work done by one bubble during growth on a heat-transfer surface;
q is the specific heat flux;
4 is the number of vaporization centers;
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Tg is the saturation temperature;
AT is the temperature differential between wall and liquid;
) is the true volumetric vapor content;
e is the liquid density;
oy is the vapor density;
Ap =p=pys
v is the kinematic viscosity of liquid;
o is the surface tension;
A is the thermal conductivity of liquid;
o is the heat transfer coefficient;
r is the latent heat of evaporation;
o, is the boiling heat-transfer coefficient;
% is the pool boiling heat-transfer coefficient;
ay - is the pipe-flow of the heat-transfer coefficient of liquid;
Ore is the heat-transfer coefficient for vapor bubbling of liquid;
¥ is the dimensionless temperature differential;
Pr is the Prandtl number;
®, k, k' is the proportionality factors;
n=z/8 is the density of vaporization centers.
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